Copyright © SYSGO. For public use.

SYSGO ,

EMBEDDING INNOVATIONS 4 /
¥ > ‘.7_1
OLd OVAITIU 0 (U

THE SELECTED TOPICS SYSGO

EMBEDDING INNOVATIONS

|. Fuzz testing and its benefit

ll. Hardware-assisted intrusion detection system for RTOS
lll. Certification for security and safety

Copyright © SYSGO | 2022 — Public | CC BY-NC 4.0

SYSGO
EMBEDDING INNOVATIONS

Fuzz Testing
and I1ts Benefit

. FUZZ TESTING — THE ENVIRONMENT SVSGO

PikeOS kernel is certified for safety for higher safety levels
— For example, bugs in the kernel may cause hazardous conditions of an airplane
— Therefore, robust verification processes and systematic testing are in place for many years
Developers very competent professionals with habits of:
— Attention to detail, testing their code on their own seriously, making mistakes only sparsely
— They usually peer-review their code
— As a safety net they have a further independent testsuite (playground) stressing the kernel for
long time by very diverse means
On top of this verification department performs verification processes independently:
— Systematic testing
« For example, PikeOS kernel has ~1900 interface requirements, each being tested
— Many other activities and analyses

Copyright © SYSGO | 2022 — Public | CC BY-NC 4.0

. FUZZ TESTING — THE ENVIRONMENT

a

<

During or after development

When the feature is done.
Or twice weekly.

Before product release

Engineering department

Developing code

Developer’s feature
tests

The kernel
playground testsuite

Product testing

N

SYSGO

EMBEDDING INNOVATIONS

p

Verification department

N

—_—

Fuzzing has been\
introduced here/

_—

Uncertified product
A 4

Copyright © SYSGO | 2022 — Public | CC BY-NC 4.0

Requirement-based

testing achieving full
code coverage

Stack analysis

Timing analysis

Partitioning analysis

Formal reviews

/

Product ready for safety certification

. THE KERNEL PLAYGROUND TEST SUITE SVSGO

« Along run/stress test suite extended by fuzzing:
— Most syscalls wrapped, their arguments are randomized
— These syscalls are called from a randomized hierarchy threads and tasks
— A blocker task randomly blocking CPUs
— An IPC task randomly issuing inter-process communication
— CPU allocation randomized, priorities randomized, address space layout randomized, ...
— From fuzzing perspective too many interesting details to fit on one slide

« Currently:
— Executed twice weekly for 4 kernel variants for 30 mins on 59 hardware platforms
— The test suite detects 33-50% of bug reports that trigger a kernel assertion or a kernel panic

Copyright © SYSGO | 2022 — Public | CC BY-NC 4.0

|. ILLUSTRATING THE BENEFIT OF FUZZ TESTING

Bugs of critical priority in PikeQS kernel over 4 wears

Detected bugs

| ‘
0

DN N T

Maonths since fuzzing has been introduced

* Focusing just on reported bugs of “critical” priority the fuzzer initially detected 6 such bugs

— These bugs were strongly desired to get addressed soon
— 5 of them were classified for possible safety consequences

B Detected by fuzzing
B Detected by other means

— Triggering them required complex, unusual and often multithreaded conditions
» After the initial period the benefit of fuzzing cannot be interpreted

— fuzzer was integrated into early development phases, so its findings do not get into bug reports

SYSGO

EMBEDDING INNOVATIONS

« Conclusion: Fuzz testing was an efficient complement in testing approaches of PikeOS kernel

Copyright © SYSGO | 2022 — Public | CC BY-NC 4.0

SYSGO
EMBEDDING INNOVATIONS

Hardware-assisted
Intrusion Detection System
for RTOS

Il. HARDWARE-ASSISTED IDS FOR RTOS SVSGO

« Utilizing ARM CoreSight to capture control-flow traces of monitored application
— Control-flow traces ~ branches, jumps or other non-linear flow in the program execution
— CoreSight stores the traces into a limited Embedded trace buffer

« IDS architecture (simplified):
— Monitored application runs on a single core, the trace processing server on second core
— The trace processing server suspends the application when the trace buffer gets full to process it
* Thus, having impact on schedulability
« A method how to construct feasible schedules was proposed
|t introduces performance reduction
« Control-flow integrity check
— Application “footprint” approach has been used
— The footprint is the rate of trace buffer overfills per processing server period
« Simple. Actually, with promising detection accuracy.
— This may be extended by more sophisticated checks (see [1])
« But these may cause further issues with scheduability and performance

[1] Towards Transparent Control-Flow Integrity in Safety-Critical Systems, ISC 2020

Copyright © SYSGO | 2022 — Public | CC BY-NC 4.0

. HARDWARE-ASSISTED IDS FOR RTOS

« Evaluation
— TACLeBench benchmark, multimedia processing single-threaded applications
— Footprint obtained during the training phase
— Then, the application got modified by exploiting added stack overflow vulnerability
— 100% detection accuracy for great majority of benchmark applications

* Detalls published in [1]

W

[1] Safety-Aware Integration of Hardware-Assisted Program Tracing in Mixed-Criticality Systems for Security Monitoring, RTAS 2021

Copyright © SYSGO | 2022 — Public | CC BY-NC 4.0

SYSGO

EMBEDDING INNOVATIONS

10

Il. HARDWARE-ASSISTED IDS FOR RTOS

« Strengths
— Promising accuracy (to be verified on more diverse set of applications)
— No internal knowledge or interaction of monitored application (e.g. instrumentation, ...)

* Neutral properties
— Typically observed detection time in two processing server periods
« May not be sufficient to detect fast intrusions soon enough
« Weaknesses
— The proposed scheduling framework may still be optimized to utilize multiple cores better
— The monitored application is suspended during trace processing
 Significant performance slowdown

« May be bounded, but then not all traces get processed
 |f unbounded we experienced 40-605% CPU capacity needed for trace processing

Copyright © SYSGO | 2022 — Public | CC BY-NC 4.0

SYSGO

EMBEDDING INNOVATIONS

11

SYSGO
EMBEDDING INNOVATIONS

Certification for
Security and Safety

Ill. CERTIFICATION FOR SECURITY AND SAFETY 9SG0

« Goals of our efforts:
— Introduce more precedents of embedded RTOS usages that are certified for security in safety
context in order to help establishing common practices:
« The standards for securing safety-critical embedded systems are not yet fully developed
« Regulations for securing critical infrastructure are not yet fully designed and required
« Markets are sometimes hesitant to certify industrial embedded systems for security, partly
because there is not yet much established practice
— What safety certification artefacts can be reused for security certification?
— How differing security standards relate to each other?
« For example, interchangeability, evaluation processes, organizations involved, ...
— As PikeOS is a software component what is the methodology for compositional certification?
« For example, IEC 62443 is well structured for composition of components, CC not so much

* More futuristic topic
— Certifying Al for safety or security

Copyright © SYSGO | 2022 — Public | CC BY-NC 4.0 13

Ill. CERTIFICATION FOR SECURITY AND SAFETY 9SG0

* Qutcomes:
— We applied PikeOS in railway, subway and smart grid while having it certified for IEC 62443 as a
Multiple Independent Layers of Security (MILS) system
« PikeOS is certified for Common Criteria only

[1] “we conclude that a CC certification of a separation kernel suffices for use as subcomponent
of a product under 62443-4-1/62443-4-2 certification”

— Reuse of safety certification artefacts and processes for security certification
« Requirement database and tracing reusable or extendable
« Security additions needed: threat modelling, tests for security aspects, penetration testing,
user manual for maintaining the security properties, ...
« Safety verification is focused on documented API, because use of undocumented API is
forbidden to application developers. This cannot be forbidden to hackers.

[1] Security Certification of Cyber Physical Systems for Critical Infrastructure based on the Compositional MILS Architecture, IECON 2021

Copyright © SYSGO | 2022 — Public | CC BY-NC 4.0

\

\ PSS A S¥8C0
QUESTIONS OR COMMENTS?

L= ¢ . ~—
. 5

RN R R

159y ®

_ €

2022 - Public

