Copyright © SYSGO

USE OF HETEROGENEOUS COMPUTING SYSTEMS AND PARTITIONED OPERATING SYSTEMS IN SPACE APPLICATIONS

Thierry Maudire Oliver Ruiz Dorantes

AGENDA

Introduction

- Heterogeneous computer systems
- Operating systems
- Types of processing elements
 - General purpose: MMU vs MPU

Use Case

- HCS in Space applications
- SYSGO's PikeOS
- SYSGO's PikeOS for MPU
- Example architecture
- Conclusion

HETEROGENEOUS COMPUTER SYSTEMS (HCS)

A Heterogeneous Computing System (HCS) is a system that utilizes multiple different processing elements

General-Purpose processors (GPPs)	Digital Signal Processor (DSP)
Field-Programmable Gate Arrays (FPGAs)	Neural Processing Units (NPU)
	Graphics Processing Units (GPUs)

Advantages

- High Performance: Distribute workload among multiple specialized processing elements
- **Flexibility:** Different processing elements for different tasks
- **Robustness:** Implicit redundancy
- Energy Efficiency: Designed for specific tasks, turned on or off as needed

OPERATING SYSTEMS FOR HCS

Partitioned Operating Systems (OS) are a type of operating system that allows multiple applications or tasks to run simultaneously on the same computing system. While also maintaining a **degree of isolation** between them.

- Fault Isolation and Containment: Each application or task is isolated from the others.
- Resource Allocation: Ability to allocate resources to specific applications or tasks.
- Security: Can prevent unauthorized access to sensitive data or the allocated resources.
- Real-Time Performance: Respond to events in a timely and deterministic manner.
- Ease of Maintenance: Each partition can be maintained independently.

PROCESSING ELEMENT TYPES

General-Purpose Processors (GPPs)	Digital Signal Processor (DSP)
Field-Programmable Gate Arrays (FPGAs)	Neural Processing Units (NPU)
	Graphics Processing Units (GPUs)

- **DSP:** Processing Audio Image Video Image Speech
- **NPU:** Neural network ...
- **GPU:** Graphics 2D/3D acceleration, float vectorial units
- **FPGA:** Custom Flexible HW IP
- General-Purpose Processors (GPPs)
 - Microprocessor MMU-based
 - Microcontroller MPU-based

DIFFERENCES BETWEEN MMU & MPU?

- Memory Management Unit
 - Translation of Virtual to Physical Memory
 - Exposes a large address space dedicated to a single process.
 - Each chunk of virtual memory (called page) can be mapped to a page in linear physical memory
 - Allows complex operating systems with multiple independent processes
- Memory Protection Unit
 - There is exactly one linear physical address space
 - All processes share the same address space
 - Found in less complex CPUs such as microcontrollers

Copyright © SYSGO. For INTERNAL Use Only.

USE CASE SYSGO PIKEOS AND XILINX VERSAL

THE HW PLATFORM

			5	The seattle
noXplore			SPS	RA UNISCOPPIN
ad-hard Micr	oprocessor Su	ibsystem		0012 20 37
	[Debug & Trace	13 ₁₂	3AU 3A
Multichannel DMA V&T Monitor Clock & Reset Error Manager Boot SpaceWire	ARM [®] Cortex TM -R5 ECC NEON MPU FPL GIC		On-chip Men	SpaceWive JTAG UART GPIOs
	Co	reLink™ NIC-400 Network Interco	nnect	
FPGA F	abric	High Speed Conne	ctivity	General Connectivity
DSPs	DPRAMs True Dual Port		to 1.8V	GPIO • 1.8V to 3.3V

Xiphos Q8S	AMD-Xilinx Zynq Ultrascale+ MPSOC Quad-core ARM Cortex-A53	Nano-, Micro-, and SmallS	
Innoflight CFC-400	AMD-Xilinx Zynq Ultrascale+ MPSoC Quad-core ARM Cortex-A53	CubeSat	
Novo Space SBC002AV	quad A53 + dual R5 (Xilinx Zynq Ultrascale+)	General Satellite	
KP Labs Leopard	AMD Xilinx Zynq UltraScale+ MPSoC; Quad ARM Cortex-A53 CPU; Dual ARM Cortex-R5 in lock-step	CubeSat	

Copyright © SYSGO | DASIA 2023

[2] NASA/TP-2022-0018058

8

Copyright © SYSGO | DASIA 2023

PIKEOS - CERTIFIED RTOS & HYPERVISOR

PikeOS

- RTOS and Hypervisor in one product
- Wide range of guest partitions / operating systems (POSIX, ARINC, Linux, Android, AUTOSAR, ...)
- Combined Safety and Security in a single product with mixed criticality
- Broad support of hardware architectures x86, ARM, PPC, RISC-V
- Certifiable to highest Safety and Security standards

Reduction of Time-to-Market

- Seamless hosting of third party applications
- Easy project configuration
- Certification artefacts
- Without any export restriction

PIKEOS FOR MPU

PikeOS for MPU

- Reuses most of PikeOS code base, and provides the same API
- Targeted to MPU based CPU cores
- Architected around a AMP Separation kernel
- Configurable mechanism for communication between AMP cores created (Inter-Core Communication (ICCOM))

Guest Runtime Environment	PikeOS Native		Drivers	Inter-Core Comm. Multi-Core Support
	PikeOS for MF	יט		ITAR free
	Hardware			
Avionics Railway Network Network	Automotive Industrial Network Network	Xilinx	Inter-Core Communication	P

EXAMPLE USE CASE ARCHITECTURE

CONCLUSIONS

- The use of heterogeneous computing platforms offer the highest level of integration and miniaturization to achieve low SWaP footprints.
- The level of specialization offered by such heterogenous HW architecture must not be offset by the use of inadequate software platforms
- SYSGO PikeOS & PikeOS for MPU allows the integration & consolidation:
 - Distribute the satellite SW functions to the specialized units
 - Ensuring the appropriate level of functional safety and cyber-security
 - Fulfill the strict hard real time behavior

QUESTIONS OR COMMENTS?

SYSGO GmbH

Am Pfaffenstein 8 55270 Klein-Winternheim Germany

Phone: +49 6136 99480 E-Mail: info@sysgo.com

Sales Contact sales@sysgo.com

in

www.sysgo.com/newsletter

www.sysgo.com/twitter

www.sysgo.com/linkedin

www.sysgo.com/youtube

www.sysgo.com