Virtualization
Performance-optimized para-virtualization on standard CPUs as well as hardware-assisted virtualization on CPUs such as ARM-VE ensure high performance with minimal changes to guest operating systems. Virtualized guest OSs can either access I/O resources through their native drivers or use a common infrastructure to access device drivers provided by PikeOS. If supported by the CPU, the IOMMU manager protects the platform from malicious DMA transfers initiated by untrusted guest OSs.

Safety
Strict time and resource partitioning of the PikeOS separation kernel prevents application failures from propagating to any other place in the system. PikeOS is developed according to Safety standards such as DO-178C, IEC 61508, EN 50128, EN 50657, and ISO 26262. It combines a modular, highly flexible and future-proof architecture with a variety of certification standards. With this fully European solution customers benefit in terms of reduction of cost, risk and full system certification lead times. We offer optional long-term support for all of our OS products.

Advanced Scheduling and Timing Support
PikeOS incorporates a scheduler combining time and priority driven scheduling. Hard real-time requirements for critical applications are met while still providing best effort scheduling for non-critical tasks. It is possible to switch between multiple pre-configured time partition scheduling schemes to optimize CPU usage based on the platform operating mode.

Health Monitoring
PikeOS provides built-in health monitoring functions, which implement all features described in the ARINC 653 standard. Application errors or hardware failures are intercepted by the OS and handled according to system and partitions-specific configuration. This ensures a predictable system behaviour.

UNIQUE COMBINATION OF FEATURES

Virtualization
Performance-optimized para-virtualization on standard CPUs as well as hardware-assisted virtualization on CPUs such as ARM-VE ensure high performance with minimal changes to guest operating systems. Virtualized guest OSs can either access I/O resources through their native drivers or use a common infrastructure to access device drivers provided by PikeOS. If supported by the CPU, the IOMMU manager protects the platform from malicious DMA transfers initiated by untrusted guest OSs.

Safety
Strict time and resource partitioning of the PikeOS separation kernel prevents application failures from propagating to any other place in the system. PikeOS is developed according to Safety standards such as DO-178C, IEC 61508, EN 50128, ISO 26262 or IEC 62304. Related certificates, certification artefacts and process documentation can be made available as a Certification Kit to SYSGO customers.

Security
In addition to the PikeOS multilayer Security architecture based on data and application separation as well as controlled information flow, PikeOS can incorporate communication encryption and binary verification. The PikeOS separation kernel architecture is fully compliant with the MILS architecture. By means of TrustZone, secure boot can be established on according ARM platforms.

Advanced Scheduling and Timing Support
PikeOS incorporates a scheduler combining time and priority driven scheduling. Hard real-time requirements for critical applications are met while still providing best effort scheduling for non-critical tasks. It is possible to switch between multiple pre-configured time partition scheduling schemes to optimize CPU usage based on the platform operating mode.

Health Monitoring
PikeOS provides built-in health monitoring functions, which implement all features described in the ARINC 653 standard. Application errors or hardware failures are intercepted by the OS and handled according to system and partitions-specific configuration. This ensures a predictable system behaviour.

DEVELOPMENT & CONFIGURATION TOOL
CODEO is an Eclipse-based IDE and offers a complete environment for embedded systems covering the whole development cycle from early simulation and emulation tools to software update mechanisms for deployed systems.

Learn more: www.sysgo.com/codeo
PikeOS is based on a separation kernel with RTOS performance including hypervisor. The hypervisor provides partitions that can host different applications – from a simple yet highly critical control task to a full-featured operating system such as Linux or Android™. As a consequence, embedded and IT applications can coexist on a single hardware platform. This saves weight, energy consumption and space leading to a significant reduction of material:

- Avionics customers benefit from best in class ARINC 653, Part 1 + Part 2 and ARINC 664
- Quicker and more deterministic multi-core handling via fine-granular locking on kernel-specific threads
- Flexible broad support of architectures and Guest OSs
- Wide Linux open source support, via SYSGO’s own Linux distribution ELinOS or vendor-specific or Yocto kernels

Learn more: www.sysgo.com/elinos

- Safety & Security bulletins / patches. Step by step enlargement of Security add-on technologies, such as TSL, SSL or encryption libraries to make systems more secure
- Enhanced PikeOS native API allows migration from software running on proprietary operating systems as well as usage of open-source projects
- Common Criteria: www.sysgo.com/common-criteria

Found in 1991, SYSGO became a trusted advisor for Embedded Operating Systems and is the European leader in hypervisor-based OS technology offering worldwide product life cycle support. We are well positioned to meet customer needs in all industries and offer tailor-made solutions with highest expectations in Safety & Security. More information at www.sysgo.com/pikeos